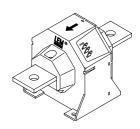


Current Transducer LT 505-T

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

I _{PN}	Primary nominal r.m.s. current			500			Α
I _P	Primary current, measuring range			0 ± 1200			Α
$\dot{\mathbf{R}}_{\mathrm{M}}$	Measuring resistance @		$T_{A} =$	70°C	T _ =	= 85°C)
			R _{M mir}	$\mathbf{R}_{M\;max}$	R _{M mir}	$\mathbf{R}_{M\;max}$	
	with ± 15 V	$@ \pm 500 A_{max}$	0	65	0	60	Ω
		@ ± 800 A _{max}	0	15	0	12	Ω
	with ± 24 V	@ ± 500 A _{max}	0	145	15	140	Ω
		@ ± 1200 A _{max}	0	22	15	18	Ω
I _{SN}	Secondary nominal r.m.s. current			100			mΑ
K _N	Conversion ratio			1:5000			
V _c	Supply voltage (± 5 %)			± 15 24			V
I _c	Current consumption			$30 (@ \pm 24 V) + I_s mA$			
\mathbf{V}_{d}	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		mn	6		Ö	kV
V _b	R.m.s. rated voltage 1), safe separation			175	50		V
2	basic isolation			350	00		V


Accuracy - Dynamic performance data

X _G	Overall accuracy @ I _{PN} , T _A = 25°C	± 0.6	%
	Linearity	< 0.1	%
I _o	Offset current @ $I_p = 0$, $T_A = 25$ °C Thermal drift of I_O - 10°C	+ 85°C ± 0.3	Max ± 0.4 mA ± 0.5 mA
t _,	Response time ²⁾ @ 90 % of I _{P max} di/dt accurately followed Frequency bandwidth (- 1 dB)	< 1	μs
di/dt		> 50	A/μs
f		DC	150 kHz

General data

$T_{_{A}}$	Ambient operating temperature		- 10 + 85	°C	
T _s	Ambient storage temperature		- 25 + 100	°C	
\mathbf{R}_{s}	Secondary coil resistance @	$T_A = 70$ °C	65	Ω	
Ü		$T_A = 85^{\circ}C$	69	Ω	
m	Mass		850	g	
	Standards		EN 50178 : 1997		

$I_{PN} = 500 A$

Features

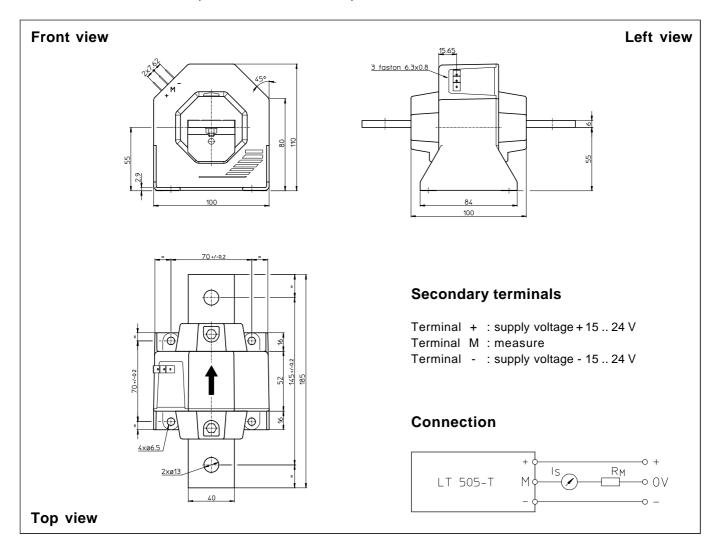
- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.


Notes: 1) Pollution class 2. With a non insulated primary bar which fills the through-hole

060718/3

²⁾ With a di/dt of 100 A/µs.

Dimensions LT 505-T (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Fastening
- Connection of primary
- Connection of secondary
- ± 0.5 mm
- 4 holes \varnothing 6.5 mm or by the primary bar
- 2 holes Ø 13 mm
- Faston 6.3 x 0.8 mm

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C
- This is a standard model. For different versions (supply voltages, turns ratios, unidirectional measurements...), please contact us.